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Abstract——Opioids are powerful analgesics but
also drugs of abuse. Because opioid addicts are suscep-
tible to certain infections, opioids have been suspected
to suppress the immune response. This was supported
by the finding that various immune-competent cells ex-
press opioid receptors and undergo apoptosis when
treated with opioid alkaloids. Recent evidence suggests
that opioids may also effect neuronal survival and pro-
liferation or migrating properties of tumor cells. A mul-
titude of signaling pathways has been suggested to be
involved in these extra-analgesic effects of opioids.
Growth-promoting effects were found to be mediated

through Akt and Erk signaling cascades. Death-promot-
ing effects have been ascribed to inhibition of nuclear
factor-�B, increase of Fas expression, p53 stabilization,
cytokine and chemokine release, and activation of nitric
oxide synthase, p38, and c-Jun-N-terminal kinase. Some
of the observed effects were inhibited with opioid recep-
tor antagonists or pertussis toxin; others were unaf-
fected. It is still unclear whether these properties are
mediated through typical opioid receptor activation and
inhibitory G-protein-signaling. The present review tries
to unravel controversial findings and provides a hypoth-
esis that may help to integrate diverse results.

I. Introduction

Stimulation of opioid receptor signaling in neurons
produces strong analgesic effects. In addition to these

well recognized effects, various studies suggest that opi-
oids elicit a variety of biological effects that appear to be
independent of their analgesic properties and may effect
cell survival or proliferation. The complexity of the mo-
lecular mechanisms whereby opioids modulate cell sur-
vival and cell death has just begun to be fully appreci-
ated. For a long time the study of opioid receptor
signaling has been focused on the classical adenylyl
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cyclase/cyclic AMP/protein kinase A (PKA1) pathway.
However, it has now been realized that this pathway
does not sufficiently explain the wide array of biological
responses to opioids. These include growth-promoting as
well as death-promoting effects that are in part shared
with other Gi-protein-coupled receptors. This review un-
ravels the complexity of potential mechanisms and con-
troversial results and reveals some hypothetical new
clinical indications for opioids.

II. Growth-Promoting and Protective Effects

Nearly 20 years ago, Meriney et al. (1985) reported
that morphine administered during embryogenesis pre-
vents apoptosis of ciliary ganglion neurons that nor-
mally die during the period of synapse formation. They
suggested that this effect was mediated through a neu-
rotrophic mechanism or inhibition of neurotransmission
(Meriney et al., 1985). Morphine also prevented per-
oxynitrite-induced apoptosis in primary astrocytes (Kim
et al., 2001) and enhanced the proliferation of endothe-
lial cells (Gupta et al., 2002), kidney fibroblasts (Singhal
et al., 1998), and adult hippocampal progenitor neurons
(Persson et al., 2003). In addition, dynorphin (KOR ag-
onist) and DOR agonists were found to increase prolif-
eration of prostate cancer cells (Moon, 1988), rat spleno-
cytes (Ni et al., 1999), and neuroblastoma cells (Law and
Bergsbaken, 1995; Law et al., 1997), respectively. Opioid
receptor antagonists had converse effects in neuroblas-
toma cells (Zagon and McLaughlin, 1983) and hippocam-
pal progenitors (Persson et al., 2003) but failed to inhibit
the growth-stimulating effects of morphine in endothe-
lial cells (Gupta et al., 2002). Table 1 summarizes results
of various studies.

Since the first description, it has been repeatedly dem-
onstrated that morphine treatment is associated with

increased Erk expression and/or phosphorylation in neu-
rons (Ortiz et al., 1995; Berhow et al., 1996; Ma et al.,
2001), immune cells (Chuang et al., 1997), and opioid
receptor transfected cells (Belcheva et al., 1998; Polak-
iewicz et al., 1998b; Kramer and Simon, 2000; Schmidt
et al., 2000). Erk activation also occurs following treat-
ment with selective DOR and KOR agonists (Hedin et
al., 1999; Kam et al., 2004; Narita et al., 2002; Persson et
al., 2003). As the Erk phosphorylation cascade ranks
among the main signaling pathways involved in mito-
genic responses to external stimuli, it may be suggested
that Erk is one messenger by which opioids transmit
their neuroprotective or survival-promoting effects. The
mechanisms by which opioids may cause Erk activation
have been extensively studied. These effects are shared
by other G-protein-coupled receptors (for review, see
Schwindinger and Robishaw, 2001) and are most likely
dependent on G-protein-signaling (please see below).

A. G��-Phosphatidylinositol 3-Kinase Pathway

Opioid receptors of the �, �, and � subtypes (MOR,
DOR, KOR) are G-protein-coupled receptors (GPCR).
Upon agonist binding, the opioid receptor couples to the
heterotrimeric pertussis toxin-sensitive inhibitory
G-protein (Gi/o) (Fig. 1). The � subunit binds GTP and
dissociates from G��. This event allows both G�i-GTP
and free G�� to regulate the activities of downstream
molecules. G�i-GTP is primarily responsible for the well
studied classical pathway consisting of an inhibition of
adenylyl cyclase, lowering intracellular cAMP levels,
and thereby decreasing PKA activity. The action of the
inhibitory G�-protein is modulated by RGS (regulator of
G-protein signaling) proteins that act as GTPase acti-
vating proteins. RGS proteins thereby reduce the life-
time of G�i-GTP and accelerate the termination of its
effects. Apart from the G�i-mediated effects, several re-
ports have underscored the relevance of opioid receptor
signaling through G�� (Narita et al., 2004). Liberated
G�� activates specific isoforms of phosphatidylinositol
3-kinase, i.e., PI3K� (Stoyanov et al., 1995; Lopez-Ilas-
aca et al., 1997; Brock et al., 2003) and PI3K� (Maier et
al., 1999; Czupalla et al., 2003). This event leads to
activation of Ras and the Raf/MEK/Erk kinase cascade
(Schwindinger and Robishaw, 2001; Kramer et al., 2002;
Persson et al., 2003). PI3K is also linked to protein
kinase B (PKB/Akt), which exerts anti-apoptotic effects
through inhibition of Bad (pro-apoptotic mitochondrial
protein) (Dudek et al., 1997; Franke et al., 1997; Polak-
iewicz et al., 1998b) and activation of NF-�B (Madrid et
al., 2000). Hence, G��-mediated PI3K-dependent signal-
ing pathways may contribute to the anti-apoptotic ef-
fects of morphine and selective agonists. These effects
depend on opioid receptor stimulation and coupling to Gi
because the anti-apoptotic or protective effects of mor-
phine are abolished with the opioid receptor antagonist
naloxone (Meriney et al., 1985, 1991) with pertussis
toxin (PTX), which inhibits Gi, and with inhibitors of

1Abbreviations: PKA, protein kinase A; CaM, calmodulin; CaMK,
calmodulin kinase; DAMGO, [D-Ala2,N-Me-Phe4,Gly5-ol]-enkepha-
lin; DOR, �-opioid receptor; EGF, epidermal growth factor; EGFR,
EGF receptor; Erk, extracellular-regulated kinase; G�, GTP-binding
protein, � subunit; G��, GTP-binding protein, � and � subunit; GDP,
G-protein dissociation protein; Gi, inhibitory pertussis toxin-sensi-
tive G-protein; GPCR, G-protein-coupled receptor; GRK, G-protein-
coupled receptor kinase; Gz, inhibitory pertussis toxin-insensitive
G-protein; HIV, human immunodeficiency virus; ICAM, intercellular
cell adhesion molecule; IL, interleukin; JNK, c-Jun-N-terminal ki-
nase; KOR, �-opioid receptor; LY294002, 2-(4-morpholinyl)-8-phe-
nyl-1(4H)-benzopyran-4-one hydrochloride; MAPK, mitogen-acti-
vated protein kinase; MEK, mitogen-activated protein kinase kinase;
MKK, mitogen-activated protein kinase kinase; MMP, metallopro-
teinase; MOR, �-opioid receptor; NF-�B, nuclear factor kappa B; NK
cell, natural killer cell; NMDA-R, N-methyl-D-aspartate receptor;
NO, nitric oxide; NOS, nitric-oxide synthase; PAR, proteinase-acti-
vated receptor; PI3K, phosphatidylinositol 3-kinase; PKA, protein
kinase A (cAMP-dependent protein kinase); PKB/Akt, protein kinase
B; PKC, protein kinase C; PTX, pertussis toxin; RGS, regulator of
G-protein signaling; Src, non-receptor tyrosine kinase; TGF, tissue
growth factor; TNF�, tumor necrosis factor �; U50,488H, trans-(�)-
3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzene acet-
amide methane-sulfonate hydrate; VEGF, vascular endothelial
growth factor.
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PI3K such as wortmannin and LY294002 (Polakiewicz
et al., 1998b; Kim et al., 2001).

Activation of the PI3K/Erk or PI3K/Akt pathways
through G�� subunits is not specific for opioid receptors
but probably a common feature of G-protein-coupled re-
ceptors (for review, see Schwindinger and Robishaw,
2001). However, whether activation of this pathway ul-
timately results in growth or proliferation probably de-
pends on several other factors, such as G�- and G�-
subtype composition, action of the respective G�, RGS
proteins, concomitant signals, and cell type. Stimulation
of various receptors that are coupled to an inhibitory
G-protein (Gio) such as receptors for chemokines
(CXCR4, CCR2) (Barbero et al., 2002, 2003), dopamine
(D2) (Ghahremani et al., 2000; Narkar et al., 2001),
serotonin (5HT1) (Adayev et al., 2003), cannabinoids
(CB1, CB2) (Esposito et al., 2002; Gomez Del Pulgar et
al., 2002; Molina-Holgado et al., 2002), lysophosphatidic
acid (Edg1–3) (Deng et al., 2002; Li et al., 2003; Taka-
hashi et al., 2003), and sphingosine-1-phosphate (S1P1,

S1P3) (Grey et al., 2002; Takuwa et al., 2002) have been
found to promote cell growth or counteract apoptotic
signals. These effects were partly attributed to G��-
mediated activation of mitogen-activated protein ki-
nases (MAPKs). On the other hand, particularly canna-
binoids also induce apoptosis and inhibit tumor growth
(De Petrocellis et al., 1998; Sanchez et al., 2001;
Casanova et al., 2003; Massi et al., 2004). Hence, can-
nabinoids share the ability to evoke dual effects with
opioids. This suggests that although G�� activation is
theoretically part of G-protein activation with all
GPCRs, cell survival may be effected differently, and the
outcome depends on the simultaneous effects of G�. This
idea is supported by several reports that demonstrate
that G� but no G�� mutants have the potential for
tumor cell transformation (Vara Prasad et al., 1994; Xu
et al., 1994; Voyno-Yasenetskaya et al., 1994; Wong et
al., 1995; Edamatsu et al., 1998; Dermott et al., 1999;
Adarichev et al., 2003). Also emphasizing the role of �
subunits, �-opioid receptor stimulation was reported to

FIG. 1. Possible mechanisms to explain growth promoting and protective effects. Upon agonist binding, �-, �-, and �-opioid receptors couple to the
heterotrimeric pertussis toxin-sensitive inhibitory G-protein (Gi/0). The � subunit binds GTP and dissociates from G��. This event allows G�i-GTP to
inhibit adenylyl cyclase (AC) resulting in a decrease of cAMP and inhibition of PKA. Free G�� relocates to the membrane and then anchors and
activates PI3K � or �. PI3K can activate protein kinase B (PKB/Akt) and the Ras/Raf/MEK/Erk pathway thereby mediating anti-apoptotic and
mitogenic signals, respectively. Alternatively, � opioid receptor activation initiates mitogenic signals through release of endogenous membrane bound
growth factor-like molecules. This effect probably depends on a CaM-mediated disinhibition of membrane bound MMP. Such activated MMPs allow
shedding of endogenously expressed EGF-like ligands, which then interact with EGFR and initiate the Erk cascade. Erk acts directly as a transcription
factor and as an upstream kinase for p70S6 kinase and p90RSK (ribosomal S6 kinase) and regulates cell cycle transition from G1 to S phase.
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cause a G��-independent Erk1/2 stimulation through
G�0 in neuronal cells (Zhang et al., 2003b).

The MAPK activation mediated through G�� is likely
to be terminated after receptor desensitization. Such
desensitization occurs rapidly for opioid and cannabi-
noid receptors in the presence of respective agonists and
will probably also rapidly terminate the G��-mediated
mitogenic signal. Since the efficiency of receptor desen-
sitization differs among agonists (Alvarez et al., 2002) a
weak “desensitizer” such as morphine (Alvarez et al.,
2002) is probably more likely to stimulate cell growth
than a strong desensitizer such as methadone. In sup-
port, several studies show growth-stimulating effects of
morphine, but there are no such reports with methadone
so far. In addition, inhibition of ciliary neuron apoptosis
with morphine did not occur if equally high doses of
morphine were administered each day but only if the
daily dose was stepwise increased to overcome receptor
desensitization (Meriney et al., 1985). Furthermore,
growth-promoting effects of opioids in vitro were only
observed at very low concentrations of the respective
opioid [in the range of 10�15 (Moon, 1988; Liu et al.,
2001) to 10�12 M (Singhal et al., 1998)] except for endo-
thelial cells where higher concentrations up to 10�4 M
were used (Gupta et al., 2002) (Table 1). It is unclear
how picomolar concentrations of morphine or other opi-
oids may promote cell growth although the binding af-
finity to opioid receptors is in the nanomolar range with
Kd values about 0.1–10 nM (Wolozin and Pasternak,
1981; Johnson and Pasternak, 1983; Meunier et al.,
1983). It seems unlikely that as yet unidentified high-
affinity binding sites for opioids exist on non-neuronal
cells that specifically mediate mitogenic signals. In tu-
mor cells, morphine causes activation of the inhibitory
G-protein at concentrations �10 nM with a maximum at
1 �M (Tegeder et al., 2003) suggesting that the binding
affinity to these opioid receptors is rather low compared
with opioid receptors from brain tissue, which is more
suggestive of low-affinity binding sites.

B. Calmodulin—Epidermal Growth Factor Receptor
Pathway

Apart from the G��/PI3K pathway, �-opioid receptor-
induced GPCR signaling can cause Erk activation
through cross-activation of the epidermal growth factor
receptor (Belcheva et al., 2001). Epidermal growth factor
receptor (EGFR) activation apparently occurs via a
plasma membrane bound metalloproteinase (MMP),
which is involved in the processing of EGF-like precur-
sor molecules that are anchored to the outer surface of
the plasma membrane (Fig. 1). The activity of this MMP
is inhibited by membrane bound calmodulin (CaM);
however, upon opioid receptor activation, CaM is re-
leased from the opioid receptor and relocated to intra-
cellular compartments (Wang et al., 2000). The metallo-
proteinase thereby becomes active and causes shedding
of endogenously expressed EGF-like ligands, which ac-

tivate the EGF receptor and subsequently the Erk cas-
cade. Notably, calmodulin kinase II (CaMK-II), which is
activated by CaM upon agonist binding to the opioid
receptor (Lou et al., 1999), can desensitize opioid recep-
tors (Mestek et al., 1995; Koch et al., 1997) and inhibi-
tion of CaMK-II in rat hippocampus attenuates mor-
phine tolerance (Fan et al., 1999) suggesting that the
CaM/EGFR-mediated growth stimulatory effect of mor-
phine diminishes once receptor desensitization occurs.
The observed cross-activation of EGFR is not restricted
to EGFR, but also occurs with other receptor tyrosine
kinases such as the fibroblast growth factor receptor
(Belcheva et al., 2002). EGFR cross-activation however,
does not contribute to �- or �-opioid receptor-mediated
activation of the Erk cascade (Belcheva et al., 2002;
Kramer et al., 2002). On the other hand, EGFR cross-
activation is not specific for �-opioid receptors but was
also observed following stimulation of other Gi-coupled
receptors (Buchanan et al., 2003; Pai et al., 2003; Hart et
al., 2004; Sales et al., 2004; Schafer et al., 2004; Tani-
moto et al., 2004) as well as receptors coupled to Gs
(Bertelsen et al., 2004) or Gq (McCole et al., 2002; Cheng
et al., 2003) again suggesting that this growth stimula-
tory signaling pathway is a common option of G-protein-
coupled receptors.

C. �3-Opioid Receptor—Nitric Oxide Pathway

In endothelial cells, growth-promoting effects of mor-
phine and Erk phosphorylation were inhibited with PTX
and the nitric-oxide synthase (NOS) inhibitor L-NAME
(N�-nitro-L-arginine methyl ester). That means that
both the inhibitory G-protein and nitric oxide (NO) are
involved (Gupta et al., 2002). Among the several known
endogenous pro-angiogenic factors, only vascular endo-
thelial growth factor (VEGF) has been shown to depend
on nitric oxide for Erk phosphorylation (Ziche et al.,
1997; Murohara et al., 1998) suggesting that morphine
either acts in a fashion similar to that of VEGF or
alternatively that morphine causes cross-activation of
the VEGF receptor as has been demonstrated for EGFR
(Belcheva et al., 2001). The opioid receptor might be
linked to nitric oxide release through the G��/PI3K/Akt
pathway since Akt stimulates endothelial NOS (Dim-
meler et al., 1999; Fulton et al., 1999). On the other
hand, nitric oxide release from immune cells is specifi-
cally evoked by activation of the morphine-selective and
opioid peptide-insensitive mu3 receptor (Magazine et
al., 1996). This receptor is also expressed on endothelial
cells (Stefano et al., 1995; Bilfinger et al., 1998) and was
recently suggested to be more close to chemokine than
opioid receptors. Hence, morphine-induced NO release
from endothelial cells may also result from mu3 receptor
activation (Fimiani et al., 1999b), which might contrib-
ute to morphine-evoked vasodilation (Stefano et al.,
1995; Bilfinger et al., 1998) and angiogenesis (Gupta et
al., 2002). This hypothesis might explain the failure of
naloxone to inhibit the pro-angiogenic effects of mor-
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phine (Gupta et al., 2002) because naloxone has lower
affinity to mu3 than morphine (Stefano et al., 1995;
Fimiani et al., 1999a). Recently, mu3 receptor expres-
sion has also been demonstrated in normal lung tissue
and lung cancer, and its activation resulted in nitric
oxide release (Fimiani et al., 1999a). Since nitric oxide
may cause tumor growth inhibition or prevention as well
as tumor progression (Wink et al., 1998) the role of mu3
receptor-mediated NO release for tumor growth is still
unresolved. Effects that are caused by nitric oxide may
contribute to the inconclusive results obtained with mor-
phine in studies investigating tumor growth. Because
morphine-evoked apoptosis in splenocytes (Fecho et al.,
1994) was inhibited by cotreatment with a NOS antag-
onist it may be suggested that a mu3 receptor-mediated
increase of NO release contributes to morphine-evoked
immunosuppression.

III. Death-Promoting and Antiproliferative
Effects

A. Hormone-Mediated Effects

It has been suggested that the immunosuppression
that occurs during chronic opioid use might be caused by
central hormone-mediated mechanisms. Plasma levels
of cortisol (Kim et al., 1999) and prolactin (Provinciali et
al., 1996) are actually elevated during chronic treatment
with morphine. Because glucocorticoid receptor antago-
nists inhibit the depletion of splenocytes or thymocytes
in morphine-treated mice, this idea of a hormone-medi-
ated effect is further supported (Fuchs and Pruett,
1993). In addition, bromocriptine, which inhibits prolac-
tin release, restores natural killer (NK) cell cytotoxity in
morphine-treated cancer patients (Provinciali et al.,
1996).

However, in contrast to the view that opioids impair
immune functions, morphine prevents post-surgical im-
munosuppression by alleviating the stress caused by the
painful procedure (Page et al., 1993). This mechanism
was suggested to be responsible for a reduction of post-
surgical metastatic colonization of adenocarcinoma cells
in morphine-treated animals (Page et al., 1993). Impor-
tantly, morphine had no effect on metastasis without
prior surgery in this study, indicating that the postop-
erative pain stress was a crucial factor in promoting the
metastatic spread. The idea that inhibition of pain pre-
vents tumor growth is supported by a study in mice
where melanoma cells were injected into a hind paw.
This caused hyperalgesia at the injected site. Treatment
with morphine as well as neurectomy of the sciatic nerve
innervating the inoculated region reduced local tumor
growth and lung metastasis (Sasamura et al., 2002).

However, in contrast to these reports, a single dose of
morphine administered after intravenous injection of
sarcoma cells was found not to inhibit but enhance me-
tastasis (Simon and Arbo, 1986). A single dose of mor-
phine obviously is not sufficient to provide the favorable

pain and stress reduction required to suppress metasta-
sis. A single dose however, may well attenuate NK cell-
mediated tumor cell killing when it is injected during
the NK-sensitive period. This may then facilitate meta-
static colonization. Hence, the resulting outcome is de-
termined by neuroimmunological interactions and by
direct effects on tumor and immune cells. In a leukemia
study in mice, for example, morphine increased tumor
cell proliferation in vivo although it inhibited prolifera-
tion of the same cells in vitro (Ishikawa et al., 1993).

B. Chemokine- and Cytokine-Mediated Effects

In addition to the hormone-mediated “indirect” mod-
ulation of cell proliferation, opioids modify T- and B-cell
responses (Guan et al., 1997; Shahabi et al., 2000; Bea-
gles et al., 2004; Roy et al., 2004), macrophage and
microglial activity (Belkowski et al., 1995; Hu et al.,
2000; Hu et al., 2002), chemotaxis (Szabo et al., 2002),
cell migration (Patel et al., 2003), and natural killer cell
cytotoxicity (Hsueh et al., 1996; Boyadjieva et al., 2001;
Yeager et al., 2002) by modifying cytokine and chemo-
kine release (Belkowski et al., 1995; Alicea et al., 1996;
Kong et al., 1997; Wetzel et al., 2000b; Sacerdote, 2003),
respective receptor expression (Zhang and Rogers,
2000), and chemokine receptor responsiveness (Grimm
et al., 1998a; Rogers et al., 2000; Szabo et al., 2002, 2003;
Chen et al., 2004) (for review, see McCarthy et al., 2001
and Rogers and Peterson, 2003). These effects do not
necessarily affect survival of the opioid-stimulated cell
but may modify the course of inflammatory and infec-
tious diseases, such as HIV infection, and thereby sur-
vival of the organism. Interestingly, MOR stimulation
may cause opposite effects on chemokine receptor ex-
pression and/or HIV susceptibility (Peterson et al., 1999;
Guo et al., 2002; Li et al., 2002; Suzuki et al., 2002a)
than KOR and DOR agonists, which were both found to
suppress HIV infection (Chao et al., 1996, 2000; Sharp et
al., 1998a, 2001). Morphine for example increases the
expression of CCR5 (Miyagi et al., 2000; Guo et al., 2002;
Mahajan et al., 2002), which is a co-receptor required for
HIV to enter target cells (Liu et al., 1996) and thereby
facilitates HIV cell penetration (Mahajan et al., 2002;
Suzuki et al., 2002a). In contrast, the KOR agonist
U50,488H inhibits the expression of CXCR4, another
HIV co-receptor, in CD4� T-cells (Lokensgard et al.,
2002). This effect is associated with a decrease of HIV
susceptibility (Chao et al., 1996; Peterson et al., 2001;
Lokensgard et al., 2002; Gekker et al., 2004). The release
of pro-inflammatory chemokines such as RANTES (reg-
ulated on activation normal T-cell expressed and se-
creted, CCL5), monocyte chemotactic protein-1, (MCP-1,
CCL2), and interferon inducible protein-10 (IP-10,
CXCL10) is increased with the MOR agonist DAMGO in
blood mononuclear cells (Wetzel et al., 2000b). In con-
trast, U50,488H inhibits monocyte chemotactic pro-
tein-1 release from astrocytes (Sheng et al., 2003).
U50,488H also reduces the lipopolysaccharide-stimu-
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lated release of pro-inflammatory cytokines including
IL-1, IL-6, and TNF� from macrophages in vitro
(Belkowski et al., 1995; Alicea et al., 1996). However,
there are also functional overlaps between MOR and
KOR. For example, IL-12 release from mouse peritoneal
macrophages was reduced with both the MOR agonist
DAMGO and the KOR agonist U50,488H (Sacerdote,
2003). Morphine had biphasic (Pacifici et al., 2000a) or
conflicting effects on cytokine release (Raghavendra et
al., 2002; Sacerdote, 2003; Roy et al., 2004). In most
studies, immune-modulating effects were inhibited with
opioid receptor antagonists and decreased in part with
prolonged treatment (Sacerdote, 2003), suggesting that
the effects are mediated through “typical” opioid recep-
tors and are subject to opioid tolerance.

Opioids may further modulate responses to chemo-
kines by blocking G-protein-coupling to chemokine re-
ceptors. Chemokines, on the other hand, may likewise
desensitize opioid receptors. This phenomenon, called
cross-desensitization (Rogers et al., 2000; Chen et al.,
2004), occurs in immune cells (Zhang et al., 2003a) and
in the central nervous system (Szabo et al., 2002) and is
likely due to enhanced phosphorylation of the respective
other receptor (Rogers et al., 2000) and/or receptor het-
erodimerization (Suzuki et al., 2002b; Chen et al., 2004).
Cross-desensitization of CCR5 by opioids is associated
with a decrease in susceptibility to HIV-1 infection
(Sharp et al., 2001; Szabo et al., 2003). As chemokine
receptors are also expressed by tumor cells (Burger et
al., 2003; Jankowski et al., 2003; Manes et al., 2003;
Robinson et al., 2003; Fernandis et al., 2004) the opioid-
chemokine interaction may not only affect immune cell-
mediated tumor defense mechanisms but may also di-
rectly modulate the growth or metastatic potential of
tumors that express both kinds of receptors.

A cross-desensitization does not specifically occur be-
tween opioid and chemokine receptors. It has also been
observed between opioid and cannabinoid receptors
(Shapira et al., 2003) and is common to many members
of the GPCR superfamily (for review, see Chuang et al.,
1996). However, specific kinases that preferentially
phosphorylate certain G-protein-coupled receptors en-
sure a certain hierarchy in the cross-desensitization pro-
cess.

C. Apoptosis Associated with Tolerance

The growth-inhibitory or apoptosis-inducing effects of
morphine in neurons and immunocytes are directly as-
sociated with morphine tolerance (Wu et al., 1999; Mao
et al., 2002) or receptor desensitization as assessed by a
lack of morphine-stimulated GTPase activity at concen-
trations that inhibit tumor growth (Tegeder et al., 2003).
Drugs that prevented the development of morphine tol-
erance in rats also prevented cell death (Fecho et al.,
1994; Mao et al., 2002) and vice versa (Mao et al., 2002).
This close association between apoptosis and receptor
desensitization suggests that uncoupling of the receptor

from Gi or receptor internalization rather than Gi acti-
vation may be the key event in initiating opioid-evoked
cell death or cell cycle arrest. Although this close asso-
ciation has not been directly shown in terms of tumor
cell growth, a comparison of dosing schedules supports
this hypothesis (Table 1). Tumor suppression basically
occurs after chronic high dose opioid administration in
many instances (Maneckjee and Minna, 1992; Harimaya
et al., 2002; Sasamura et al., 2002; Tegeder et al., 2003).
By contrast, tumor-enhancing effects with morphine oc-
cur after a single dose (Simon and Arbo, 1986) or at
relatively low daily doses (Gupta et al., 2002) that are
much lower than the ED50 for antinociceptive effects,
which range between 0.5 and 20 mg/kg depending on the
model and strain or species used (Grognet et al., 1983;
Elmer et al., 1998; Zong and Pollack, 2000). Hence, such
low concentrations of morphine are unlikely to result in
substantial receptor desensitization (Alvarez et al.,
2002). Comparison of high and low doses of morphine in
vitro also reveals dual concentration-dependent effects,
i.e., mitogenesis at low and growth inhibition or apopto-
sis at higher concentrations (Singhal et al., 1998; Gupta
et al., 2002).

D. Is Cell Death Initiated by Receptor Desensitization

The responsiveness of opioid receptors is reduced
upon ongoing or repeated exposure to opioid agonists.
This agonist-dependent desensitization is referred to as
homologous desensitization. It involves a phosphoryla-
tion of the receptor through various GPCR kinases
(GRK) (Zhang et al., 1998; Schulz et al., 2002), subse-
quent uncoupling from the G-protein (Whistler and von
Zastrow, 1998; Liu et al., 1999), binding to �-arrestin 2
(Zhang et al., 1998; Law et al., 2000; McDonald et al.,
2000; Pierce and Lefkowitz, 2001; Xiang et al., 2001) and
sequestration into clathrin-coated vesicles with help of
the GTPase dynamin (Chu et al., 1997; Li et al., 1999).
In addition to agonist-specific desensitization, functions
of GPCRs are regulated by agonist-independent mecha-
nisms, namely heterologous desensitization. In this
case, the initial phosphorylation is mediated through
various second messenger-activated protein kinases
such as protein kinase C (PKC) (Shahabi and Sharp,
1993; Ueda et al., 2001; Xiang et al., 2001), CaMK-II
(Mestek et al., 1995), MAPK (Polakiewicz et al., 1998a;
Schmidt et al., 2000) and tyrosine kinases (Pak et al.,
1999). Hence, inhibition of kinases involved in receptor
phosphorylation and desensitization should abolish the
antiproliferative effects of morphine if the hypothesis of
“desensitization-dependent growth inhibition” is true.
Indeed, inhibition of PKC activity was shown to atten-
uate the development of opioid tolerance (Narita et al.,
1996; Aley et al., 2000; Narita et al., 2001) and to restrict
NMDA-R signaling (Mao et al., 1994, 1995), which has
been proposed to account for morphine-induced cell
death in spinal cord neurons (Mao et al., 2002). PKC
inhibition also prevents a morphine-induced cell cycle
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arrest in breast cancer cells (I. Tegeder, unpublished
observations).

Receptor internalization initiated by phosphorylation
of the receptor through GRKs is Gi-protein-dependent
and therefore subject to inhibition with PTX (Pak et al.,
1999). On the other hand, heterologous desensitization
involves Gi-protein-independent kinases and is there-
fore not reversed with PTX (Pak et al., 1999) but by, for
example, the tyrosine kinase inhibitor genistein (Pak et
al., 1999) or the PKC inhibitor calphostin (Ueda et al.,
2001). Hence, depending on the kinase primarily in-
volved in receptor desensitization and internalization,
PTX may antagonize the pro-apoptotic effects of mor-
phine in some cells (Yin et al., 1997) but not in others
(Maneckjee and Minna, 1992; Tegeder et al., 2003).
These controversial findings therefore do not contradict
the hypothesis of an “internalization/desensitization-de-
pendent growth inhibition”. The failure of PTX to antag-
onize the effects of morphine in some studies might also
indicate that Gz rather than Gi is involved, because in
contrast to all other members of the Gi subfamily, Gz is
no substrate for the pertussis toxin-sensitive ADP-ribo-
syl transferase (Ho and Wong, 2001). Although Gz re-
sembles Gi both in terms of receptors and effectors it
exhibits some unique biochemical and regulatory prop-
erties. For example, Gz interacts with p21-activated ki-
nase, G-protein-regulated inducers of neurite out-
growth, and the Eya2 transcription cofactor. These
targets may constitute the link between Gz and down-
stream regulators of cellular development, survival, pro-
liferation, differentiation, and even apoptosis (Ho and
Wong, 2001). Irrespective of Gi or Gz signaling however,
one would expect that desensitization-dependent effects
are antagonized with naloxone because it is generally
accepted that opioid receptor antagonists reduce opioid
receptor desensitization and internalization (Crain and
Shen, 1995; Shen and Crain, 1997); however, results
with naloxone were also conflicting. The effects of mor-
phine were abolished in some studies (Maneckjee et al.,
1990; Roy et al., 1998; Yin et al., 1999; Rozenfeld-Granot
et al., 2002) but not effected in others (Maneckjee and
Minna, 1992; Hatzoglou et al., 1996; Kugawa et al.,
1998; Gupta et al., 2002; Tegeder et al., 2003). Particu-
larly the inhibition of tumor cell growth by morphine
was mostly not antagonized with naloxone (; Maneckjee
and Minna, 1992; Hatzoglou et al., 1996; Kugawa et al.,
1998; Tegeder et al., 2003). Atypical binding sites were
therefore suggested to be involved (Maneckjee and
Minna, 1992; Hatzoglou et al., 1996), which might have
a low affinity to naloxone. In support, inhibitory effects
of naloxone were found in several studies where concen-
trations were 2 to 10 times higher than those of mor-
phine (Stiene-Martin and Hauser, 1993; Maneckjee and
Minna, 1994; Roy et al., 1998; Hu et al., 2002; Rozenfeld-
Granot et al., 2002) whereas failure often occurred at
equimolar or lower concentrations (Maneckjee and

Minna, 1992; Hatzoglou et al., 1996; Kugawa et al.,
1998; Tegeder et al., 2003).

E. Direct Effects of Internalized Agonist

It has been suggested that opioid agonists are inter-
nalized together with their receptors and might directly
modulate the function of intracellular signaling mole-
cules. In particular, � agonists were reported to bind
directly to the reductase part of active dimeric NO syn-
thases, thereby acting as noncompetitive inhibitors of
the enzymes (Kampa et al., 2001). This may represent a
potential explanation for internalization-dependent ef-
fects; however, it is unclear whether opioids may act as
direct enzyme modifiers in vivo or whether high intra-
cellular concentrations of an internalized agonist may
have direct toxic effects.

F. �-Arrestin As Signal Transducer

It has been recognized that �-arrestins not only act as
adapter molecules that target GPCRs to clathrin-coated
pits for endocytosis but might have novel functions as
GPCR signal transducers (McDonald and Lefkowitz,
2001). Recent reports suggest that they bind directly to
Src family kinases and components of the Erk and c-
Jun-N-terminal kinase 3 (JNK3) MAPK cascades. By
linking these proteins to the GPCR, �-arrestins can con-
fer distinct enzymatic activities upon the receptor,
which may lead to signals that are important for the
regulation of cellular growth and differentiation. This
may provide an explanation for the observed morphine-
evoked activation or up-regulation of various members
of the MAPK family including Erk1/2, p38, and c-Jun-
N-terminal kinase (Ma et al., 2001; Singhal et al., 2001).
It has been reported that mice lacking �-arrestin 2 ex-
perience enhanced morphine-induced analgesia and do
not become tolerant to morphine (Bohn et al., 1999,
2002). In addition, �-arrestin 2 was found to be up-
regulated in the brain of rats made tolerant to opiods
(Hurle, 2001) emphasizing the importance of this scaf-
folding protein for �-opioid receptor desensitization
(Whistler and von Zastrow, 1998). Although the binding
partners recruited by �-arrestin 2 upon opioid receptor
phosphorylation have not yet been identified, studies
with other GPCRs may provide an idea of potential
interactions.

Stimulation of proteinase-activated receptor-2 (PAR2)
induces the assembly of receptor/�-arrestin/Raf/Erk
complexes that lead to a cytosolic retention of activated
kinases and promote growth inhibitory effects associ-
ated with PAR2 activation (DeFea et al., 2000). In yeast
two hybrid screens and brain lysates, �-arrestin was
found to bind the tissue restricted isoform of JNK3. The
complexes of �-arrestin and JNK3 also contain up-
stream JNK activators (McDonald et al., 2000; Mc-
Donald and Lefkowitz, 2001). The formation of this com-
plex therefore retains JNK3 in the cytosol and increases
its overall activity by facilitating the interaction with its
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upstream partners. JNK3 is up-regulated in rat brain
during chronic morphine treatment and withdrawal
(Fan et al., 2003), and a targeted deletion of JNK3 pro-
tected mice from neuronal apoptosis (Kuan et al., 2003)
suggesting that this JNK isoform may contribute to the
cell death-promoting effects of morphine. JNKs are
among several kinases that phosphorylate p53 at N-
terminal serine residues leading to a stabilization of the
protein. Therefore, JNK activation might constitute a
signaling pathway by which morphine causes the ob-
served p53 phosphorylation and stabilization (Singhal et
al., 2002; Tegeder et al., 2003). The effects of morphine
on p53 may also be mediated through the ubiquitin
ligase Mdm2 which ensures rapid p53 degradation un-
der homeostatic conditions. If p53 phosphorylated in
response to various kinds of cell stress, Mdm2 can no
longer bind to p53 and hence, p53 is stabilized and acts
as key regulator of cell proliferation and cell death. As
reported recently, Mdm2 expression is modified in cer-
tain brain regions in morphine-treated rats (Jiang et al.,

2003). In addition, �-arrestin 2 directly interacts with
Mdm2 (Shenoy et al., 2001) and regulates its ubiquitin
ligase activity. Hence, there are several potential mech-
anisms that may link opioid receptors to p53 and other
proteins involved in cell cycle control and apoptosis (Fig.
2).

IV. Summary of Mechanisms of Action

Opioid receptor signaling has been implicated in the
regulation of cell proliferation and cell death in various
cells expressing opioid receptors. It emerged that
growth-promoting effects occur at low concentrations or
single doses of opioids and are probably mediated in part
through G��-mediated activation of PI3K/Akt and Ras/
Erk cascades. Alternatively, �-opioid-induced mitogene-
sis may be mediated through cross-activation of growth
factor receptors. On the other hand, growth inhibitory
effects occurred at chronic opioid treatment or relatively
high in vitro concentrations and are closely associated

FIG. 2. Possible mechanisms for death-promoting and antiproliferative effects of morphine. Repeated or ongoing activation of opioid receptors leads
to opioid tolerance. This desensitization involves a phosphorylation of the receptor through GRKs or other kinases such as PKC and tyrosine kinases,
subsequent uncoupling from the G-protein, binding to �-arrestin 1 or 2 and sequestration of the receptor into clathrin-coated vesicles with help of the
GTPase dynamin. Apart from targeting the opioid receptor to clathrin-coated pits to allow for endocytosis, �-arrestins bind directly to Src family
kinases and components of the Erk and JNK3 MAPK cascades. By recruiting these proteins to the GPCR �-arrestins can confer distinct enzymatic
activities upon the receptor. The assembly of receptor/�-arrestin/Raf/Erk complexes can lead to a cytosolic retention of Erk and inhibition of its
growth-promoting effects. Scaffolding of JNK with its upstream kinases Ask (apoptosis signal-regulating kinase) and MKK4/7 may increase its overall
activity. Additionally, �-arrestin interacts with Mdm2, which regulates p53 ubiquitination.
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with opioid receptor desensitization and internalization.
Desensitization-dependent effects might be mediated
through direct effects of internalized agonist, through
“withdrawal” of a growth-promoting signal or through
�-arrestin that acts as a scaffolding protein for Src fam-
ily kinases and MAPKs. By recruiting these proteins to
the receptor, �-arrestin can confer distinct enzymatic
activities upon the opioid receptor and thereby mediate
growth inhibitory or apoptotic signals.

V. Clinical Implications

A. Inhibition of Inflammation with Endogenous
Opioids

The diverse immune modulating effects observed with
selective agonists at �, �, and � receptors suggest that
endogenous opioids with different receptor specificities
also accomplish different tasks. The question arises
whether it might be possible to exploit or enhance cer-
tain features of endogenous opioids to achieve desired
effects such as tumor suppression, inhibition of chronic
inflammation, and increased resistance toward viral in-
fection such as HIV.

There are several studies that suggest that endoge-
nous opioids have similar effects on immune cell func-
tions as opioid alkaloids or synthetic agonists. The
MOR-selective endomorphin-1 for example potentiates
HIV expression in brain cell cultures (Peterson et al.,
1999). A similar effect was observed with �-endorphin,
which is an agonist at � and � receptors (Sundar et al.,
1995), whereas the KOR agonist dynorphin inhibited
cytokine induced up-regulation of HIV expression (Chao
et al., 1995). Endomorphin-1 was further reported to
alter IL-10 and IL-12 release from T-cells (Azuma and
Ohura, 2002) and IL-8 production in colon cancer cells
(Neudeck and Loeb, 2002). Most studies addressing the
effects of �-endorphin on immunocytes found immuno-
suppressive effects in the form of inhibition of prolifer-
ation or reduction of pro-inflammatory cytokine release
(Garcia et al., 1992; Panerai et al., 1995; Bhardwaj et al.,
1996; Ientile et al., 1997; Hosoi et al., 1999; Takeba et
al., 2001). For example, �-endorphin inhibited TNF�,
IL-1�, and matrix metalloproteinase-9 expression in sy-
novial epithelial cells from patients with rheumatoid
arthritis (Takeba et al., 2001). Leu- and Met-enkephalin
(DOR agonists) had similar effects (Takeba et al., 2001).
Absence of �-endorphin in �-endorphin-deficient mice
was associated with increased splenocyte proliferation
and lipopolysaccharide-stimulated IL-6 and TNF� pro-
duction in spleen macrophages (Refojo et al., 2002). Cell
proliferation in spleen and bone marrow was also in-
creased in �-opioid receptor knockout mice (Tian et al.,
1997). However, in contrast to these immunosuppres-
sive effects, �-endorphin increased the number of natu-
ral killer cells in the spleen (Kowalski, 1997), enhanced
conditioned NK cell activity (Mandler et al., 1986; Hsueh
et al., 1995) and concanavalin A-induced proliferation

(van den Bergh et al., 1991; Navolotskaya et al., 2002b),
IL-2 production (van den Bergh et al., 1991), and Ca2�

mobilization in T-cells (Shahabi et al., 1996). The latter
effect was shared by Met-enkephalin and inhibited with
the DOR-specific antagonist naltrindole (Shahabi et al.,
1996), indicating that this effect was probably mediated
through the � receptor. Met-enkephalin also stimulated
T-cell proliferation (Singh et al., 1999) probably by acti-
vating Erk-signaling pathways (Sharp et al., 1998b;
Shahabi et al., 1999; Kramer et al., 2002); however, it
induced apoptosis in leukemia cells (Mernenko et al.,
1996). Dynorphin A, a specific KOR agonist (Chavkin et
al., 1982), enhanced the mitogen-induced proliferative
response and interleukin-2 production of rat spleno-
cytes. In addition, dynorphin protected cardiomyocytes
from ischemia or hypoxia-induced injury (Cao et al.,
2003).

It is difficult to define a general rule of how endoge-
nous opioids will modify the immune response in a given
situation because of these partly conflicting results.
However, based on the literature it appears reasonable
to suggest that the release of endogenous opioids is
aimed at inhibiting exaggerated inflammatory reactions
(Gironi et al., 2000; Takeba et al., 2001; Philippe et al.,
2003) and inflammatory pain (Cabot et al., 1997, 2001;
Machelska et al., 2002) whereas NK cell-mediated de-
fense mechanisms against tumor cells or invading mi-
croorganisms are supported (Hsueh et al., 1995, 1996;
Kowalski, 1997; Boyadjieva et al., 2001; Yeager et al.,
2002).

Immune cells express various endogenous opioids (Pr-
zewlocki et al., 1992; Mousa et al., 2001; Rittner et al.,
2001; Jessop et al., 2002). In case of inflammation or
tissue injury, they migrate from the circulation to the
inflamed tissue (Mousa et al., 2001; Brack et al., 2004).
This process is controlled by adhesion molecules such as
ICAM (Machelska et al., 2002) and selectin (Machelska
et al., 1998) on leukocytes and vascular endothelium. In
this way, recruited immunocytes release endogenous
opioid peptides at the site of inflammation to reduce the
pain (Stein et al., 1990; Schafer et al., 1994; Machelska
et al., 1998; Cabot et al., 2001) and to stop the prolifer-
ation and cytokine release from immunocytes thereby
acting as “anti-inflammatory” molecules. Anti-selectin
and anti-ICAM antibodies inhibit the migration and
thereby cut the supply of endogenous opioid peptides at
the site of inflammation (Machelska et al., 1998, 2002).
As a result, the pain intensifies. However, whether opi-
oid peptide-releasing immunocytes can be specifically
directed into desired tissues or whether the release of
different opioid peptides can be orchestrated in a desired
fashion has not yet been evaluated.

B. Morphine Plus Naloxone As Add-On for Cancer
Treatment

The observed tumor-suppressive effects of morphine,
which were mostly not antagonized with naloxone, sug-
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gest the intriguing possibility that morphine might be
useful as an adjunct in cancer therapy not only to reduce
cancer pain but also tumor growth. Since pain treatment
in cancer patients mostly requires chronic high dose
opioid therapy, tolerance will surely occur. Therefore,
opioid tolerance-dependent growth inhibition is much
more likely in this setting than single or low dose-asso-
ciated mito- and angiogenesis (Gupta et al., 2002). How-
ever, it has to be considered that a general suppression
of the immune system might jeopardize the favorable
outcome. Interestingly, there is only one study demon-
strating accelerated tumor growth upon chronic mor-
phine treatment at reasonable doses (Ishikawa et al.,
1993). This was associated with general immunosup-
pression (Ishikawa et al., 1993). The unfavorable effects
of morphine in this case might be due to the type of cells
that were leukemia and sarcoma cells (Ishikawa et al.,
1993) whereas most of the “successful” in vivo studies
employed adenocarcinoma cells (Maneckjee et al., 1990;
Maneckjee and Minna, 1990, 1994; Hatzoglou et al.,
1996; Kampa et al., 1997; Sasamura et al., 2002;
Tegeder et al., 2003). Apart from a possible unfavorable
immunosuppression, morphine treatment leading to tol-
erance might be associated with apoptosis of GABA-
ergic inhibitory spinal cord neurons (Mao et al., 2002)
compromising endogenous mechanisms to restrict pain
signaling. This is particularly disadvantageous in can-
cer patients suffering from serious pain. Since naloxone
was able to prevent neuronal apoptosis (Mao et al., 2002)
whereas it mostly failed to antagonize morphine-in-
duced apoptosis of tumor cells (Maneckjee and Minna,
1992; Hatzoglou et al., 1996; Kampa et al., 1997;
Tegeder et al., 2003) chronic high dose morphine plus
low dose naloxone treatment might be a therapeutic
option that possibly combines favorable tumor suppres-
sion with reduced neuronal toxicity. The results ob-
tained in previous in vivo experiments suggest that this
issue is worth being addressed in clinical studies.

C. Subanalgesic Morphine to Accelerate Healing
Processes

The observed mito- and angiogenic properties of low
subanalgesic doses of morphine (or other opioids) might
possibly be exploited for treatment of some types of
tissue injury to support or accelerate healing processes.
A study that investigated the effects of morphine on
stress ulcers in the stomach of rats supports this hypoth-
esis because it showed that morphine not only prevented
stress ulceration but also promoted the regeneration of
gastric mucosa and accelerated ulcer healing (Cho et al.,
2003). There was no change of the number of microves-
sels in this study. However, the dose of 2 to 8 mg/kg is in
the range of effective antinociceptive doses for rats and
therefore probably was too high to facilitate angiogene-
sis. The endogenous MOR and DOR agonist �-endorphin
was reported to stimulate the expression of cytokeratin
16 (Bigliardi-Qi et al., 2000) and transforming growth

factor � type II (Bigliardi et al., 2003) in human skin
organ cultures. Both, CK16 and TGF� type II receptor
are not expressed in normal skin but appear in regen-
erating epithelial cells of the epidermis during wound
healing. TGF� is one of the most important factors for
the maturation of granulation tissue and the epitheliza-
tion of the defect. Hence, the effects of �-endorphin on
CK16 and TGF� further indicate a role of opioids for
wound healing. The hypothetical potential of subanalge-
sic doses of morphine or other opioid alkaloids to speed
up healing processes, however, has not yet been ad-
dressed with in vivo studies.
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